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Short intro
• 2019 – Current : Post-doctoral researcher at DPWE, NYCU

◦ Integrated slope monitoring with low-powered long-range IoT devices
◦ Dielectric spectroscopy using TDR
◦ Suspended sediment concentration (SSC) monitoring in reservoir, river basin
◦ Engineering geophysical exploration (borehole geophysics, surface seismic, ERT)

• 2014 – 2019 : PhD in Civil Engineering, NCTU
◦ Advisor : Professor Chih-Ping Lin
◦ Research group: Geo-Imaging and Geo-Nerve Research Group

• 2010 – 2013 : BEng (Hons) in Civil Engineering, Hong Kong PolyU

• Coding experience 
◦ MATLAB, Python, Node-red, C and C++
◦ Software-hardware integration, Raspberry Pi, Arduino, LoRa
◦ PCB design @ KiCAD, easyEDA
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Roadmap
• What is AIoT?

• Why AIoT?

• From IoT 
◦ Architecture
◦ Sensors
◦ Transmission 
◦ Presentation

• To AIoT
◦ Server / Cloud side AIoT
◦ Edge AI + IoT

• Prospects
◦ Applications in various fields
◦ Smart field monitoring

• Discussions
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What is AIoT?

4

(Anant Desai, 2020)

Internet of Things + Artificial Intelligence
|| 

Artificial Intelligence of Things



5(zi-media, 2010)
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Internet
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Why AIOT?
• Progression of computing technology allowed rapid data reduction 

and even artificial intelligence (AI) inference

• Full automation, less human effort required
◦ Increase frequencies of measurement, data reduction, information 

interpretation

◦ Reduce delay in data interpretation

◦ Early detection and 24/7 monitoring

◦ Cost-effectiveness in mass deployment

• Embrace unknowns through AI
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2010-2015 23000 0

2016-2017 86300 645

2018-2019 164000 1290

2020 68400 1020

2021 44700 788

Year



From IoT
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Edge Transmission Cloud / Core

IoT – Architecture
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IoT – Sensors
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(TaiwanIoT, 2020)



IoT – Sensors
•Geotechnical applications
◦ Surveillance image
◦ Inclination angle 
◦ Water level
◦ Soil moisture
◦ Pressure sensor 

◦ Overburden / back pressure of soil

◦ GPS/GNSS
◦ Temperature/humidity
◦ Precipitation/rainfall

• Civil engineering applications
◦ Vibration sensor (structural)
◦ Inclination sensor
◦ Flow rate
◦ Turbidity 
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IoT – Sensors + Loggers
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IoT – Data loggers
• Data logger is required to 

store/send acquired data 
◦ Micro-controllers (𝜇𝐶)
◦ Single-board computer (SBC)
◦ Embedded system (PC form)

• Ruggedness, small form factor

• Low power consumption
◦ Usually 0.1W-10W

• Rich with GPIO (general purpose 
input/output)

◦ ADC
◦ Sensor communication interfaces

◦ Synchronous 
◦ SPI : Faster, needs more wiring
◦ I2C : Slower, only needs 2 wire

◦ Asynchronous : UART, USB, RS-232, RS-485
◦ Needs same baud rate
◦ 1-to-1 communication, non-blocking, RX-TX 

concurrent
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Embedded system



IoT – Transmission
• From data logger to server / cloud service

◦ Connect local host/logger to centralized server

◦ Involving WAN and LAN

• Some considerations for mass deployment
◦ Wireless vs Wired connection

◦ Low power consumption

◦ Link budget (Transmission distance vs. Data rate)

◦ Subscription cost 

◦ Security
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(Nguyen et. al, 2019)

(Arun Kumar V, 2019)



IoT – Interfaces
•How to communicate data into database?

•MQTT is the most popular IoT communication protocol
◦ Apart from Websocket (http), CoAP, AMQP
◦ File synchronization service (Dropbox, Google Drive, OneDrive etc.) is too 

bulky for IoT

•MQTT is analogous to a post office system
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• Presenting IoT data in a meaningful way

• Node-RED 
◦ Easy, rapid programming tool based on Node.js for 

wiring IoT components together
◦ Hardware devices, APIs and online services
◦ Browser-based editor with flows that lets user 

directly visualize data flow directions
◦ Easy deployment on local host, device, cloud

• Or other frontend language 
◦ JavaScript, Python, Java, C++

• Further integration with AI
◦ TensorFlow.js, machine learning 

IoT – Presentation
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To AIoT
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How to AIoT?
• AIoT makes IoT even more useful

◦ allows user gain understanding quickly 
◦ deduce key information from big data

• How to incorporate AI into IoT architecture?
◦ Value-added analysis at server/cloud side
◦ Edge AI

• AIoT at server/cloud side
◦ Deep learning/machine learning on accumulated sensor data 
◦ Useful information is extracted using AI models from big data

• Edge AI
◦ Key info is extracted in edge systems before transferred via IoT 
◦ No internet is needed
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(Kavita Char, 2021)



Server/Cloud AIoT
• AI analysis on IoT data stored at server/cloud services

• Train and implement deep learning/machine learning models on 
measured sensor data 
◦ Extract data patterns from big data
◦ Interpret and identify potential pattern from IoT data
◦ Infer possible outcome when new data arrives

• Performed on either self-hosted server or cloud services
◦ Google Colab, Amazon Sagemaker, Microsoft Azure
◦ Cloud services offer CPU/GPU resources for deep learning 
◦ Less maintenance required, pay-as-you-use

• Google Colab is popular amongst AI researcher
◦ Training data can be accessed from Google Drive directly 
◦ Access to PyTorch, Keras, TensorFlow, and OpenCV
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Edge AI + IoT
• Most AI applications ran in cloud/serve 

due to complexity of ML in the past

• Why Edge AI?
◦ Transmission bandwidth for real-time image / 

video is too demanding
◦ Requires real-time response and 

interpretation
◦ Demand low network latency (low ping)
◦ Low power, lower cost
◦ Concern to data privacy and security

• Why is it possible now?
◦ Higher computational capability on edge 

devices
◦ GPU/ASIC/Neuron sticks available to speed up 

AI computation at the edge

• Common applications
◦ Image classification

◦ Face recognition
◦ Traffic control

◦ Autonomous vehicle
◦ Vibration analysis
◦ Voice processing 
◦ Computer vision
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Prospects
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What happens from AIoT?
• Increased operational efficiency

◦ AIoT process and detect patterns in real-time data 
that are not visible to the human eye 

◦ Instantaneous pattern deduction optimizes 
production processes and improve workflow

◦ Increased efficiency and reduced operational costs

• Improved risk management
◦ Risks identification in a timely manner 
◦ Increase safety and reduce loss 
◦ E.g. early detection on mechanical faults on airlines 

and safety risks in machineries
◦ Allows for predictive maintenance
◦ Reduced unplanned downtime
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What happens from AIoT?
• New products and services

◦ Process and draw insights from large data
◦ New techniques 

◦ voice recognition, face recognition and predictive analysis

◦ New services 
◦ Autonomous delivery services, smart video doorbells, voice 

based virtual assistants 
◦ Predictive maintenance for vehicles or building automation 

systems
◦ Disaster search and rescue operations

• Enhanced / targeted customer experience
◦ In retail, AIoT tailors shopping experience and gives 

personalized recommendations 
◦ Based on customer behavior, demographic information 

and customer
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Applications
• Intelligent agriculture

• Smart home

• Crowd control

• Traffic detection

• Autonomous vehicle (self-driving cars)

• Healthcare

• Power generation

• Sediment monitoring…
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Traffic detection using Yolo v3

Tesla AutoPilot CV



Intelligent agriculture
• Agriculture is one of the earliest sector with IoT 

involvement, so naturally is AIoT

• Intelligent agriculture system
◦ Adjustments based on collected sensor data 
◦ Weather, water usage, temperature and crop/soil conditions
◦ From fuzzy logic to machine learning based action

• AIoT in agriculture
◦ Smart management on irrigation, fertilization, pest control
◦ Assist in resources utilization, yield enhancement, seasonal 

forecasting, crop planning

25
(Lin and Rustia, 2019)

• AI + computer vision (CV) to monitor 
crops and large farmlands
◦ Early detection of pest, intruder, hazard 

and so forth



Smart home
• Home assistant

◦ Open source system to home automation
◦ Rich integration with node-red, MQTT, Zigbee, BLE, 

IKEA, Google, AWS, so much more
◦ Presence detection, intruder alert, temperature 

control, power consumption …

• Closed-source/ proprietary home 
automation
◦ HomeKit (Apple), MiJia (XiaoMi), Amazon Echo, 

SmartThings

• Interesting example
◦ Raspberry Pi controlled intruder alert
◦ Identify thieves with AI and CV
◦ Custom TensorFlow model => recognize package 
◦ TF + Python => signal the alarm system

26Ryder Damen - Fighting porch pirates with AI (and flour)



Smart field monitoring 
with IoT 
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Background

29(地調所, 2021)Collaboration project with Prof Chao, Prof Lin, Prof Yang, K.H. Kang, and Sinotech E.C.



Subsurface monitoring system
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• TDR : 2 monitoring hosts

• Ground water level (GWL) : 3 real-time monitoring stations (LoRa-based)

• Volumetric water content : 1 station

109-WL-2TC 109-WL-4T 109-WL-1W 109-WL-3W 109-WL-5W

GWLTDR TDR GWL GWL



IoT architecture
- Slope monitoring
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Monitoring data
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109-WL-2TC

109-WL-1W 109-WL-3W

109-WL-5W



Data visualization 
- Node-red flow based programming
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IoT architecture
- Power control
Remote control the power supply system for field stations
◦ Through MQTT + node-red
◦ Switch power physically without requiring physical presence
◦ Power control and status monitoring 

From prototyping to custom PCB 
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AIoT in smart field monitoring
Based on big data gathered from precipitation, ground water level, 
volumetric water content, TDR signal …
◦ Perhaps measured physical parameters are not sufficient
◦ Require extra dimension of data
◦ Build deep learning model based on statistical model 
◦ Neural network may see unobserved pattern from big data
◦ Currently under progress

Power control for stations
◦ Implement power adjustment based on power generation and consumption
◦ Predictive maintenance for the health of battery / solar panel
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To AI or not to AI?
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Background of AI
• Back in 1958, Frank Rosenblatt at Cornell design the first 

artificial neural network
◦ Described presciently as “Pattern-recognizing device”
◦ Era of mainframe computers filled rooms and ran on vacuum tubes
◦ Inspired by the interconnections between neurons in the brain

• Limitation of computing hardware soon overcame 
◦ Moore's Law and other improvements in hardware 
◦ Yielded a roughly 10-million-fold increase in the number of 

computations that a computer could do in a second
◦ Inclusion GPU in computation 

• Interest in artificial intelligence (AI) is revisited in the late 
2000s
◦ Tools available up to the computing challenge
◦ Renamed as “deep learning" 
◦ Extra layers of neurons is introduced

37(Thompson et al., “Deep Learning’s Diminishing Returns.”)

Observation that the transistors amount in a dense 
integrated circuit (IC) doubles about every two years

In 2014, Intel launched 
an even smaller, more 
powerful 14nm chip

(Google Trends, 2021)

Keyword : deep learning



Deep learning 
• Expert-knowledge based model 

◦ Modelling based on professional know-how

◦ (Geotechnical) modelling with governing equations

◦ Early AI were rule based, applying logic and expert 
knowledge to derive results

• Flexible statistical models (most AI/DL)
◦ Require myriad combinations of priori, activation 

functions, bias, weighting and networks

◦ Use numerous neurons (in neural networks) to train 
suitable AI model

◦ Provide outcomes with probability [87% cat]
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(Khan, 2019)

(3blue1brown, 2017)



From expert-based to flexible model
• Key variables are pre-established in expert-based models

◦ Priori of possible parameter value is provided

◦ Done with limited computation amount, yet with reasonable accuracy

◦ Popular early on, but learning ability of these models stalls if not all variable 
is correctly specified by the expert

• Flexible models (deep learning) are less efficient
◦ Needs vastly more computation to match expert models

◦ But! with enough computation (and data), flexible models can outperform 
properly established expert-based models
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Current issue on AI implementation
• Current AI/DL are mostly over-parametrized 

◦ Parameter amount (unknown variables) > data amount
◦ Classically, this would lead to overfitting
◦ Model learns general trends and the random fluctuation of 

trained data

• Stochastic gradient descent (隨機梯度下降法) prevents 
this issue by
◦ Randomly initialize parameters
◦ Iteratively adjust parameter sets

• Surprisingly, this enhanced the overall accuracy of 
trained AI model
◦ Proven in machine translation, object detection, and other 

general AI models
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Cost to higher accuracy
• Improvement cost for deep learning is high

◦ Lower error rate by half, expect at least 500x the current 
computational resources

◦ 2012 AlexNet : 2 GPU @ 5-6days

◦ 2018 NASNet-A : Half the error rate of AlexNet, but more than 1,000 
times computing power 
◦ In 1,000-fold difference, only 6-fold improvement came from better hardware

◦ The rest : more processors / running longer, incurring higher costs

• Training a model with 5% error rate would require 
1019 billion floating-point operations
◦ Cost US $100 billion (NT$2,781,720,000,000=2781億元) and produce 

carbon emissions equal to New York City in a month

• Google subsidiary DeepMind trained its system to play Go
◦ Estimated cost $35 million
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(Thompson et al., 2020)



Silver lining
• Increasing computing power: Hardware accelerators

◦ Already in effect: FPGA, ASIC (Google’s TPU), GPU instead of CPU
◦ Fundamentally, they sacrifice generality of the computing platform for 

efficiency of increased specialization
◦ Longer-term gains will require adopting wholly different hardware 

frameworks
◦ Perhaps hardware based on analog, neuromorphic, optical, or quantum 

systems

• Reducing computational complexity: Network Compression and 
Acceleration
◦ Pruning away weights, quantizing the network, or using low-rank 

compression
◦ Reduce floating point operations in evaluation

• Integrated expert-model + AI model 
◦ Or other under-appreciated machine learning models
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(YOLOv4)

(IBM quantum computer)



Takeaways
• Embrace AI in future researches

◦ AI is merely a large statistical model

◦ Addition of expert knowledge into AI model is the know-how

•Go towards open source community for robust programming 

• TPU > GPU >> CPU
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Interested?
• Start from IoT first!

◦ Node-red + MQTT + Arduino

• Check out
◦ Teachable machine : hosted by Google

◦ Tensorflow : Handwriting recognition

◦ YOLOv3/v4 (You Only Look Once, Version 3/4) 
◦ Real-time object detection algorithm that identifies 

specific objects in videos, live feeds, or images.

◦ Identifies 80 object types

◦ TinyML
◦ suitable for Edge AI in small MCU 

◦ Arduino Nano 33 BLE Sense, ESP32… 
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(YOLOv4)

(Teachable machine)

(Bochkovskiy et al., 2020)



End of presentation
THANK YOU!
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