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ABSTRACT 

Time Domain Reflectometry (TDR) was recently introduced as the most effective non-destructive testing method for soil- 
nailing inspection. Current practice of TDR inspection was conducted through a pre-installed single-core electric wire alongside 
the rebar within the soil nails. However, the aforementioned practice is shown to be hindered by its inability to decouple the effect 
of rebar length from possible grout defects, and by excessive overestimation of rebar length if the wire is coiled around the rebar. 
A new TDR waveguide construction and a corresponding decoupled data reduction method (for both soil-nail length and grout 
condition inspection) were proposed in this study. Feasibility and advantages of the new approach were experimentally verified 
with two types of TDR device. Based on the proposed methodology, a portable, low-cost, and low-speed TDR device was shown 
to suffice as a quick and economical tool for quality inspection of soil-nailing works. 

Key words: Soil nail, quality inspection, non-destructive testing (NDT), time domain reflectometry (TDR).

1.  INTRODUCTION 
Soil-nailing is an effective, cost-effective, and widely-used 

technique for enhancing the stability of slopes and retaining walls 
(Chan 2008). Quality assurance of the as-built length and integ-
rity of cement grout annulus is critical to the success of a soil-nail 
system. However, complete supervision at all times during con-
struction stage is inefficient and not cost-effective in practice. 
Non-destructive testing (NDT) methods are desirable to provide 
quick inspections of installed soil nails and allow independent 
site audits after construction. A number of NDT methods, in-
cluding the sonic echo, mise-a-la-masse, electromagnetic induc-
tion, and electrical resistance methods, magnetometry, time-  
domain reflectometry (TDR), and surface wave time domain 
reflectometry (SWTDR) were examined in Hong Kong (Cheung 
2003; Cheung and Lo 2005; Lee and Ove Arup & Partners Hong 
Kong Limited (OAP) 2007).  

Among these potential NDT methods, TDR was found to be 
the most effective after being supported by a large number of 
field measurements and a pilot quality assurance program (Lee 
and Ove Arup & Partners Hong Kong Limited (OAP) 2007). 
Guidelines on TDR testing procedure and interpretation of test 
results can be found in Cheung (2006). Cheung and Lo (2011) 
further examined various sources of uncertainties in soil-nail 

length estimation using TDR. Two categories of uncertainties are 
revealed. One is nail-independent uncertainty, including built-in 
error of testing instrument and human judgment (single and mul-
ti-operator). The other is nail-dependent uncertainty, including 
wire type, grout annulus (age, integrity, and characteristics), and 
reinforcement (diameter, length, and connectors). In order to deal 
with pertinent uncertainties as much as possible, they introduced 
guidelines on testing procedures and the interpretation of test 
results.   

Current practice of the Hong Kong TDR method for quality 
inspection of soil nails involves pre-installing an electrical wire 
alongside the steel reinforcing bar to form a twin-conductor 
transmission line. A TDR device sends an electromagnetic (EM) 
pulse travelling along the transmission line and receives reflec-
tions induced by any impedance discontinuity (i.e., change in 
conductor geometry or grout condition) within the line. Once the 
pulse-propagation velocity along the soil-nail transmission line is 
pre-determined and calibrated, the soil-nail length can be esti-
mated from the pulse travel time between the reflections from the 
head and the end of the soil nail.  

Two drawbacks of TDR method were identified: (1) Single- 
core electrical wire can be easily coiled around the rebar, leading 
to excessive overestimation of TDR-deduced soil-nail length; (2) 
Determination of soil-nail length becomes unreliable if the grout 
annulus is irregular or defective. Zostrich Geotechnical (2016) 
showed a similar configuration to determine the length of the 
rock bolt and soil nail using TDR. A coaxial (or twisted pair or 
fiber optic) cable is attached to the rock bolt and soil nail, and 
attached to a connector with a serialized endcap, which provides 
a unique electronic serial number for practice of quality inspec-
tion of soil nails. However, the aforementioned drawbacks were 
still not addressed. To overcome these problems, this study fur-
ther introduced a modified and improved TDR method for en-
hancing the reliability of soil-nail length determination while at 
the same time providing independent quality assessment of the 
cement grout. The performance of the new approach was evalu-
ated and validated by laboratory physical models.  
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Fig. 4  (a) Three testing configurations of fully-grouted soil nails; (b) Two testing configurations of soil nails with grout defects 

with high-speed rise time ( 300 ps) and high sampling resolution 
(minimum 12.2 ps), whereas the portable and low-cost AEA 
Technology TDR20/20 (AEA Technology 2014) produces wave-
forms with low-speed rise time (about 4000 ps) and lower sam-
pling resolution (minimum 170 ps). The detail specifications of the 
TDR devices are listed in Table. 1. Both TDR devices generate a 
step-pulse rather than an impulse used in Cheung and Lo (2011). 
Their advantages will be further discussed. Pulse-propagation ve-
locities need to be determined or calibrated beforehand. The pulse- 
propagation velocity of the QR320 coaxial cable is known from the 
manufacturer to be 0.87 times the speed of light. By taking meas-
urements on the three rebar-cable pairs of known lengths before 
and after casting the grout annulus, the pulse-propagation veloci-
ties in cement grout and air (VC and Vair) were determined to be 
0.48 and 0.88 times the speed of light respectively. 

4.1  Inspection of Soil-Nail Length 

Figure 5 shows the measured waveforms from the coaxial 
cables in the fully-grouted soil nails of different length. The 
measured waveforms from the coaxial cables in the soil nails 
with grout defects are not shown since they are of the same 
length as the fully-grouted soil nails. Both TDR100 and 
TDR20/20 show strong open-end reflections with time delays 
proportional to the soil-nail length, but only TDR100 clearly 
depicts the head reflections owing to its sharp rise time. An extra 
measurement (by short-circuiting the conductors at the soil-nail 
head) was conducted to give a strong negative reflection at the 
head, in order to facilitate the determination of travel time, espe-
cially for TDR20/20. The points of reflections were quantitative-
ly defined by the dual tangent line method (Chung and Lin 2009). 
Subsequently, the coaxial cable length, which also represents the 
soil-nail length, was accurately determined from the pulse travel 
time between the two reflection signals using Eq. (4). The meas-
ured waveforms from the coaxial cables were well behaved and 
independent of the grout condition, minimizing the potential of 
operator judgment error. It should be noted that the coaxial cable 
may not be perfectly straight, but other than that, the new ap-
proach eliminated various sources of uncertainties in soil-nail 
length estimation which were earlier discussed and evaluated by 
Cheung and Lo (2011). 

4.2  Inspection of Soil-Nailing Grout Condition 

For each soil nail, a second measurement was then taken 
using the outer conductor of the coaxial cable and the rebar to 

Table 1 Specifications of TDR devices for measurement 
performance 

 TDR100* TDR20/20** 

Step-pulse risetime 200 picoseconds 4060 picoseconds***

Timing resolution Min. 12.2 picoseconds Min. 169.5 picoseconds

Spatial resolution 1.8 mm 2.54 cm 

Measurement range 2 ~ 2100 m 0 ~ 2010 m 
*  From Campbell Scientific (2010). 
** From AEA Technology (2014). 
*** According to the manual, although the TDR20/20 exhibits no dead space, 

the actual impedance readings in the first 2 feet are indicative rather than 
absolute. Then the corresponding risetime can be estimated. 

 

 
form a sensing waveguide for examining the grout condition. As 
shown in Fig. 6, the waveforms of the second measurements in 
the grout are more complex than that on the coaxial cable alone, 
due to the connector to the soil nail and higher heterogeneity in 
the grout than the insulating material inside the coaxial cable. By 
comparing the waveforms of fully-grouted soil nails (solid lines) 
with those with air-void defects (dotted lines), it is shown that 
air-void defect induces an in-between reflection and reduces the 
total travel time. However, the ability to “see” the reflection from 
the air void depends on the void size and the spatial resolution of 
TDR, which is inversely proportional to the rise time of the inci-
dent pulse. Figure 6(a) shows the TDR100 waveform with an 
apparent hill-shape reflection due to void defect in the grout 
(similar to the results depicted in Fig.3(a)),while the waveform of 
low-speed TDR20/20, as shown in Fig. 6(c), does not have an 
apparent hill-shape reflection to detect the 55 cm void defect in 
the grout. Nevertheless, all cases in Fig. 6 clearly show reduced 
travel time from the strong open-end reflection. From the prede-
termined soil-nail length by the coaxial cable measurement, the 
effective grout length is estimated from the total travel time using 
Eq. (5). The results are listed in Table 2. Both TDR100 and 
TDR20/20 yield satisfactory estimation of effective grout length. 
Although TDR20/20 produced more dispersive waveforms and 
did not clearly reveal the reflection signals from relatively small- 
sized voids, the shortened total travel time due to void existence 
is reasonably estimated by the dual tangent line method. This 
finding encouraged the use of low-speed TDR devices for higher 
portability and cost saving. 
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Fig. 5 Measured TDR waveforms on the coaxial cables in the three soil nails of different length using (a) TDR100 and (b) TDR20/20. 
The times of head reflections are different because different lead cables were used for the two TDR devices 

 

Fig. 6 Waveforms measured by TDR100 on the grout for (a) the 1.2 m soil nails and (b) 2.2 m soil nails (fully-grouted soil nails in solid 
lines and soil nails with grout defects in dotted lines). Corresponding results by TDR20/20 are shown in (c) and (d). The location 
and size of the grout defect are depicted in (c) for the 1.2 m soil nail and in (d) for 2.2 m soil nail 

Table 2  Estimation of effective grout length from total travel time 

 

TDR100 TDR20/20 

120 cm soil nail 

with 55 cm grout defect 

220 cm soil nail 

with 70 cm grout defect 

120 cm soil nail 

with 55 cm grout defect 

220 cm soil nail 

with 70 cm grout defect 

Estimated effective 
grout length (cm) 

64.3 152.0 68.1 149.5 

Accuracy* 98.9% 98.7% 95.2% 99.7% 

* Accuracy  abs (Estimated grout length – Real grout length) / Real grout length 
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This study adopted step-pulse TDR devices for the testing. 
The corresponding impulse responses are obtained by taking 
derivatives of the waveforms in Fig. 6, as shown in Fig. 7. In 
comparison with impulse response, step-pulse response eased the 
identification of reflections from grout defects and determination 
of travel time by dual tangent line method. On the contrary, when 
an impulse TDR device is used, the step-pulse response is ob-
tained by taking the integrals of the measured waveform. As a 
tool for on-site audits, it is recommended to adopt a step-pulse 
TDR device directly or indirectly convert the waveforms to 
step-pulse response in the interpretation interface.  

4.3  Limitations in Complex Grout Conditions 

More complex grout conditions may be encountered in the 
field. For example, the un-grouted section may be filled with 
water or mud. The effect of different type of grout defects was 
examined by filling the void with dry sand (water content  = 
1%) and wet sand ( = 20%). The resulting waveforms are 

shown in Fig. 8. The dielectric constant of dry sand section is 
only slightly higher than that of air void. Therefore, their meas-
ured waveforms are quite similar. On the contrary, the wet sand 
section has a higher dielectric constant, resulting in lower char-
acteristic impedance (Eq. 1) and lower propagation velocity (Eq. 
3). According to the measured waveforms in Fig. 8, the dielectric 
constant of the wet sand section seems slightly higher than that of 
intact grout. In the defect section, there appeared to be a negative 
reflection (a concave response) followed by a positive reflection. 
Two subsequent positive reflections from the soil-grout interface 
and open end often make the open-end reflection less clear for 
travel time analysis. In rare condition, when the moisture content 
of the entrapped soil in the gout is such that the effective dielec-
tric constant is the same as the intact grout, it would not be pos-
sible to identify the grout defect. However, engineers are most 
concerned about void defects associated with loss of pulled out 
resistance. 

 
 

 

Fig. 7  The derivative of waveforms shown in Fig. 6 

     

Fig. 8  Measured TDR waveforms on the soil nail with different types of filling defects using (a) TDR100 and (b) TDR20/20 
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The velocity for the (LS  LC) term in Eq. (5) is no longer 
equal to Vair if the grout defect is not a simple air void. One 
should come up with a representative velocity for the defected 
section in order to estimate the effective grout length using Eq. 
(5). Since the condition of the grout defect is not known a priori, 
it is not possible to calibrate the velocity beforehand. Detailed 
analysis in complex grout conditions requires full waveform 
analysis based on the comprehensive wave propagation model 
developed for TDR measurement system (Lin and Tang 2007). 
However, further study is needed to develop a repeatable testing 
connector and full waveform inversion.  

5.  SUMMARY AND CONCLUSIONS 

Two drawbacks of current TDR practice for inspecting soil- 
nailing works were identified: (1) Single-core electrical wire 
could be easily coiled around the rebar, leading to excessive 
overestimation of TDR-deduced soil-nail length; (2) Determina-
tion of soil-nail length may be unreliable if the grout annulus is 
irregular or defective. This study further introduced a new TDR 
soil-nail waveguide construction and de-coupled data reduction, 
in order to overcome these issues and eliminate almost all uncer-
tainties previously identified. The new approach changes how 
TDR method is practiced for inspecting soil-nailing works in four 
aspects, including construction of soil-nail waveguide, presenta-
tion of TDR waveform (i.e., step response vs. pulse response), 
analysis of TDR waveform, and selection of appropriate TDR 
devices.  

The sensing waveguide is formed by attaching a stiff coaxial 
cable alongside the rebar to form a novel dual-functional wave-
guide. The stiff coaxial cable, which avoids excessive coiling and 
span similarly to the rebar, is used to pulse the soil-nail length 
independent of grout condition. The outer conductor of the coax-
ial cable and the rebar forms another waveguide for grout condi-
tion sensing. Void sections in the grout would induce additional 
reflections in TDR waveforms and change the total travel time 
from the head to the end of soil nail. Void detection requires a 
high-speed TDR device, but this requirement may be largely 
relaxed by the proposed data reduction method based on total 
travel time. With the soil-nail length predetermined by an inde-
pendent measurement on the coaxial cable, the effective grout 
length was shown to be reasonably estimated from the measured 
total travel time of the strong reflections from head and end of 
soil nail. Therefore, a portable, low-cost, and low-speed TDR 
device suffices for such a task. Moreover, a step-pulse TDR was 
shown to possess apparent advantages over a short-pulse TDR 
during waveform interpretation. More complex grout conditions 
may be encountered in the field. Further study based on full 
waveform analysis is needed if detailed examination of grout 
condition is desired.  
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